Skip to article frontmatterSkip to article content

Attachments – the Python funnel for LLM context

Turn any file into model-ready text + images, in one line

Most users will not have to learn anything more than: Attachments("path/to/file.pdf")

TL;DR

pip install attachments
from attachments import Attachments
ctx = Attachments("https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample.pdf",
                   "https://github.com/MaximeRivest/attachments/raw/refs/heads/main/src/attachments/data/sample_multipage.pptx")
llm_ready_text   = str(ctx)       # all extracted text, already "prompt-engineered"
llm_ready_images = ctx.images     # list[str] – base64 PNGs

Attachments aims to be the community funnel from file → text + base64 images for LLMs.
Stop re-writing that plumbing in every project – contribute your loader / modifier / presenter / refiner / adapter plugin instead!

Quick-start ⚡

pip install attachments

Try it now with sample files

from attachments import Attachments
from attachments.data import get_sample_path

# Option 1: Use included sample files (works offline)
pdf_path = get_sample_path("sample.pdf")
txt_path = get_sample_path("sample.txt")
ctx = Attachments(pdf_path, txt_path)

print(str(ctx))      # Pretty text view
print(len(ctx.images))  # Number of extracted images

# Try different file types
docx_path = get_sample_path("test_document.docx")
csv_path = get_sample_path("test.csv")
json_path = get_sample_path("sample.json")

ctx = Attachments(docx_path, csv_path, json_path)
print(f"Processed {len(ctx)} files: Word doc, CSV data, and JSON")

# Option 2: Use URLs (same API, works with any URL)
ctx = Attachments(
    "https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample.pdf",
    "https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample_multipage.pptx"
)

print(str(ctx))      # Pretty text view  
print(len(ctx.images))  # Number of extracted images

Advanced usage with DSL

from attachments import Attachments

a = Attachments(
    "https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/" \
    "sample_multipage.pptx[3-5]"
)
print(a)           # pretty text view
len(a.images)      # 👉 base64 PNG list

Send to OpenAI

pip install openai
from openai import OpenAI
from attachments import Attachments

pdf = Attachments("https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample_multipage.pptx[3-5]")

client = OpenAI()
resp = client.chat.completions.create(
    model="gpt-4.1-nano",
    messages=pdf.openai_chat("Analyse the following document:")
)
print(resp.choices[0].message.content)

or with the response API

from openai import OpenAI
from attachments import Attachments

pdf = Attachments("https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample_multipage.pptx[3-5]")

client = OpenAI()
resp = client.responses.create(
    input=pdf.openai_responses("Analyse the following document:"),
    model="gpt-4.1-nano"
)
print(resp.output[0].content[0].text)

Send to Anthropic / Claude

pip install anthropic
import anthropic
from attachments import Attachments

pptx = Attachments("https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample_multipage.pptx[3-5]")

msg = anthropic.Anthropic().messages.create(
    model="claude-3-5-haiku-20241022",
    max_tokens=8_192,
    messages=pptx.claude("Analyse the slides:")
)
print(msg.content)

DSPy Integration

We have a special dspy module that allows you to use Attachments with DSPy.

pip install dspy
import dspy
from attachments.dspy import Attachments

dspy.configure(lm=dspy.LM('openai/gpt-4.1-nano'))
rag = dspy.ChainOfThought("question, document -> answer")

result = rag(
    question="What is the main message of the document?", 
    document=Attachments("https://github.com/MaximeRivest/attachments/raw/main/src/attachments/data/sample_multipage.pptx[3-5]")
)
print(result.answer)

Optional: CSS Selector Highlighting 🎯

For advanced web scraping with visual element highlighting in screenshots:

# Install Playwright for CSS selector highlighting
pip install playwright
playwright install chromium

# Or with uv
uv add playwright
uv run playwright install chromium

# Or install with browser extras
pip install attachments[browser]
playwright install chromium

What this enables:

# CSS selector highlighting examples
title = Attachments("https://example.com[select:h1]")  # Highlights H1 elements
content = Attachments("https://example.com[select:.content]")  # Highlights .content class
main = Attachments("https://example.com[select:#main]")  # Highlights #main ID

# Multiple elements with counters and different colors
multi = Attachments("https://example.com[select:h1, .important][viewport:1920x1080]")

Note: Without Playwright, CSS selectors still work for text extraction, but no visual highlighting screenshots are generated.

Optional: Microsoft Office Support 📄

For dedicated Microsoft Office format processing:

# Install just Office format support
pip install attachments[office]

# Or with uv
uv add attachments[office]

What this enables:

# Office format examples
presentation = Attachments("slides.pptx[1-5]")  # Extract specific slides
document = Attachments("report.docx")           # Word document processing
spreadsheet = Attachments("data.xlsx[summary:true]")  # Excel with summary

Note: Office formats are also included in the common and all dependency groups.

Advanced Pipeline Processing

For power users, use the full grammar system with composable pipelines:

from attachments import attach, load, modify, present, refine, adapt

# Custom processing pipeline
result = (attach("document.pdf[pages:1-5]") 
         | load.pdf_to_pdfplumber 
         | modify.pages 
         | present.markdown + present.images
         | refine.add_headers | refine.truncate
         | adapt.claude("Analyze this content"))

# Web scraping pipeline
title = (attach("https://en.wikipedia.org/wiki/Llama[select:title]")
        | load.url_to_bs4 
        | modify.select 
        | present.text)

# Reusable processors
csv_analyzer = (load.csv_to_pandas 
               | modify.limit 
               | present.head + present.summary + present.metadata
               | refine.add_headers)

# Use as function
result = csv_analyzer("data.csv[limit:1000]")
analysis = result.claude("What patterns do you see?")

DSL cheatsheet 📝

PieceExampleNotes
Select pages / slidesreport.pdf[1,3-5,-1]Supports ranges, negative indices, N = last
Image transformsphoto.jpg[rotate:90]Any token implemented by a Transform plugin
Data-frame summarytable.csv[summary:true]Ships with a quick df.describe() renderer
Web content selectionurl[select:title]CSS selectors for web scraping
Web element highlightingurl[select:h1][viewport:1920x1080]Visual highlighting in screenshots
Image processingimage.jpg[crop:100,100,400,300][rotate:45]Chain multiple transformations
Content filteringdoc.pdf[format:plain][images:false]Control text/image extraction
Repository processingrepo[files:false][ignore:standard]Smart codebase analysis
Content Controldoc.pdf[truncate:5000]Explicit truncation when needed (user choice)
Repository Filteringrepo[max_files:100]Limit file processing (performance, not content)
Processing Limitsdata.csv[limit:1000]Row limits for large datasets (explicit)

🔒 Default Philosophy: All content preserved unless you explicitly request limits


Supported formats (out of the box)


Advanced Examples 🧩

Multimodal Document Processing

# PDF with image tiling and analysis
result = Attachments("report.pdf[tile:2x3][resize_images:400]")
analysis = result.claude("Analyze both text and visual elements")

# Multiple file types in one context
ctx = Attachments("report.pdf", "data.csv", "chart.png")
comparison = ctx.openai("Compare insights across all documents")

Repository Analysis

# Codebase structure only
structure = Attachments("./my-project[mode:structure]")

# Full codebase analysis with smart filtering
codebase = Attachments("./my-project[ignore:standard]")
review = codebase.claude("Review this code for best practices")

# Custom ignore patterns
filtered = Attachments("./app[ignore:.env,*.log,node_modules]")

Web Scraping with CSS Selectors

# Extract specific content from web pages
title = Attachments("https://example.com[select:h1]")
paragraphs = Attachments("https://example.com[select:p]")

# Visual highlighting in screenshots with animations
highlighted = Attachments("https://example.com[select:h1][viewport:1920x1080]")
# Creates screenshot with animated highlighting of h1 elements

# Multiple element highlighting with counters
multi_select = Attachments("https://example.com[select:h1, .important][fullpage:true]")
# Shows "H1 (1/3)", "DIV (2/3)", etc. with different colors for multiple selections

# Pipeline approach for complex scraping
content = (attach("https://en.wikipedia.org/wiki/Llama[select:p]")
          | load.url_to_bs4 
          | modify.select 
          | present.text
          | refine.truncate)

Image Processing Chains

# HEIC support with transformations
processed = Attachments("IMG_2160.HEIC[crop:100,100,400,300][rotate:90]")

# Batch image processing with tiling
collage = Attachments("photos.zip[tile:3x2][resize_images:800]")
description = collage.claude("Describe this image collage")

Data Analysis Workflows

# Rich data presentation
data_summary = Attachments("sales_data.csv[limit:1000][summary:true]")

# Pipeline for complex data processing
result = (attach("data.csv[limit:500]")
         | load.csv_to_pandas 
         | modify.limit
         | present.head + present.summary + present.metadata
         | refine.add_headers
         | adapt.claude("What trends do you see?"))

Extending 🧩

# my_ocr_presenter.py
from attachments.core import Attachment, presenter

@presenter
def ocr_text(att: Attachment, pil_image: 'PIL.Image.Image') -> Attachment:
    """Extract text from images using OCR."""
    try:
        import pytesseract
        
        # Extract text using OCR
        extracted_text = pytesseract.image_to_string(pil_image)
        
        # Add OCR text to attachment
        att.text += f"\n## OCR Extracted Text\n\n{extracted_text}\n"
        
        # Add metadata
        att.metadata['ocr_extracted'] = True
        att.metadata['ocr_text_length'] = len(extracted_text)
        
        return att
        
    except ImportError:
        att.text += "\n## OCR Not Available\n\nInstall pytesseract: pip install pytesseract\n"
        return att

How it works:

  1. Save the file anywhere in your project
  2. Import it before using attachments: import my_ocr_presenter
  3. Use automatically: Attachments("scanned_document.png") will now include OCR text

Other extension points:


API reference (essentials)

Object / methodDescription
Attachments(*sources)Many Attachment objects flattened into one container
Attachments.textAll text joined with blank lines
Attachments.imagesFlat list of base64 PNGs
.claude(prompt="")Claude API format with image support
.openai_chat(prompt="")OpenAI Chat Completions API format
.openai_responses(prompt="")OpenAI Responses API format (different structure)
.openai(prompt="")Alias for openai_chat (backwards compatibility)
.dspy()DSPy BaseType-compatible objects

Grammar System (Advanced)

NamespacePurposeExamples
load.*File format → objectspdf_to_pdfplumber, csv_to_pandas, url_to_bs4
modify.*Transform objectspages, limit, select, crop, rotate
present.*Extract contenttext, images, markdown, summary
refine.*Post-processtruncate, add_headers, tile_images
adapt.*Format for APIsclaude, openai, dspy

Operators: | (sequential), + (additive)


Roadmap

Join us – file an issue or open a PR! 🚀

Star History

Star History Chart