The modular, extensible architecture behind the Python funnel for LLM context
Overview¶
Attachments transforms any file into LLM-ready context through a simple but powerful architecture. At its core, it’s a grammar of composable verbs that work consistently across all file types.
The Big Picture¶
The Attachments architecture was designed to support a single goal: create the Attachments
object without losing my mind while doing it. Attachments
’ role is simple—take any string that represents a path or URL and return an object that has .text
ready to f-string into a prompt and base64 images (in a list) ready to be sent to an LLM. The difficulty comes from the fact that Attachments does everything from a simple string. Under the hood, it has to decide a lot of things, and there are inevitably lots of possible pipelines because Attachments’ goal is to process any string and URL. Oh, and Attachments
must also elegantly deliver its output to any LLM library (or non-LLM library). To achieve this, we designed a grammar of file processing (inspired by dplyr and ggplot2). This consists of 6 composable verbs, each with a very specific role. We also designed a DSL (Domain Specific Language) that allows users to specify how they want their files to be processed. We could have used dictionaries, but this DSL is entirely optional. When using the verbs directly to compose your own pipeline, you do not need to use the DSL—you can just pass your parameters to the functions directly.
One API, Any File:
# Simple API - works for any file type
ctx = Attachments("document.pdf", "data.csv", "image.jpg")
print(ctx.text) # All content as text
print(ctx.images) # All images as base64
ctx.claude("Analyze this content") # Ready for AI
Grammar API - Full Control:
# Composable verbs for complex workflows
insights = (attach("report.pdf")
| load.pdf_to_pdfplumber # File → Object
| split.pages # Object → Collection
| present.markdown # Extract content
| refine.add_headers # Polish content
| adapt.claude("Analyze")) # Format for AI
Pipeline Operators:
|
(pipe): Sequential processing - each step overwrites/transforms the attachment+
(plus): Additive composition - combines multiple presenters’ outputs# Sequential: each step transforms the result result = attach("doc.pdf") | load.pdf_to_pdfplumber | present.markdown # Additive: combines text + images + metadata into one attachment content = attach("doc.pdf") | load.pdf_to_pdfplumber | (present.text + present.images + present.metadata)
The Grammar of File Processing¶
Six Composable Verbs (inspired by dplyr):
Verb | Purpose | Example | Result |
---|---|---|---|
load.* | File → Object | load.pdf_to_pdfplumber | PDF → pdfplumber.PDF |
modify.* | Object → Object | modify.pages | Extract pages 1-5 |
split.* | Object → Collection | split.paragraphs | 1 doc → N chunks |
present.* | Object → text/images/video(future)/audio(future) | present.markdown | Object → text/images |
refine.* | text/images/video(future)/audio(future) → text/images/video(future)/audio(future) | refine.add_headers | Add structure |
adapt.* | text/images/video(future)/audio(future) → external API format | adapt.claude() | → Claude messages |
Why This Works:
- Consistency: Same pattern for PDFs, CSVs, images, URLs
- Composability: Verbs chain naturally with
|
and+
or stack (the pipe is not mandatory) - Extensibility: Add new file types by implementing the verbs
DSL Commands: Declarative Control¶
Embedded in file paths for non-programmers, for llms using attachments as tool (? :) ):
"document.pdf[pages:1-5]" # Extract specific pages
"image.jpg[rotate:90][crop:100,100,400,300]" # Transform image
"data.csv[limit:1000][summary:true]" # Limit and summarize
"url[select:h1][format:markdown]" # CSS selector + format
Commands modify how verbs behave without changing the grammar structure.
Architecture: Five Stages + Split¶
Linear Pipeline:
attach("file.pdf[pages:1-5]")
↓ LOAD → pdfplumber.PDF object
↓ MODIFY → pages 1-5 selected
↓ PRESENT → .text + .images extracted
↓ REFINE → headers added, content polished
↓ ADAPT → Claude API format
Split Branch - Vectorized Processing:
attach("report.pdf")
↓ LOAD → pdfplumber.PDF
↓ SPLIT → [page1, page2, page3, ...] # AttachmentCollection
↓ PRESENT → [text1, text2, text3, ...] # Vectorized
↓ ADAPT → Combined AI messages
Key Insight: Split enables granular analysis instead of just holistic summaries.
The Attachment Data Container¶
Core Structure (src/attachments/core.py
):
class Attachment:
# Input
attachy: str = "file.pdf[pages:1-5]" # Original with DSL
path: str = "file.pdf" # Parsed path
commands: Dict = {"pages": "1-5"} # Parsed commands
# Processing
_obj: Any = None # Loaded object (PDF, DataFrame, etc.)
# Output (LLM-ready)
text: str = "" # Extracted text
images: List[str] = [] # Base64 images
metadata: Dict = {} # Processing info
Content flows through the pipeline, getting richer at each stage.
Registration System: How It All Connects¶
Decorators register functions (src/attachments/core.py
):
@loader(match=lambda att: att.path.endswith('.pdf'))
def pdf_to_pdfplumber(att): ...
@modifier
def pages(att, pdf_obj): ...
@presenter
def markdown(att, obj): ...
@splitter
def paragraphs(att, text): ...
Namespaces provide access (src/attachments/__init__.py
):
load = SmartVerbNamespace(_loaders) # load.pdf_to_pdfplumber
modify = SmartVerbNamespace(_modifiers) # modify.pages
present = SmartVerbNamespace(_presenters) # present.markdown
split = SmartVerbNamespace(_splitters) # split.paragraphs
Type dispatch connects them:
- Loaders use match functions:
att.path.endswith('.pdf')
- Others use type hints:
pdf_obj: 'pdfplumber.PDF'
Why This Architecture?¶
For Users:
- Simple:
Attachments("file.pdf")
just works - Powerful: Grammar system for complex workflows
- Consistent: Same patterns across all file types
For Contributors:
- Modular: Add one verb at a time
- Extensible: New file types via decorators
- Testable: Each component isolated
For the Ecosystem:
- Composable: Verbs work together naturally
- Discoverable: IDE autocomplete for all functions
- Maintainable: Clear separation of concerns
Core Architecture¶
The core architecture centers on one simple data container (Attachment
) and six registries that hold functions. Each registry serves a specific purpose in the pipeline, and the registration system uses decorators to automatically organize functions by type. The VerbNamespace
classes provide clean access to registered functions, while type dispatch ensures the right function gets called for each object type.
The Attachment Class¶
Location: src/attachments/core.py
The Attachment
class is the fundamental data container that flows through the entire pipeline:
class Attachment:
"""Simple container for file processing."""
def __init__(self, attachy: str = ""):
self.attachy = attachy # Original input with DSL commands
self.path, self.commands = self._parse_attachy() # Parsed path and DSL
self._obj: Optional[Any] = None # Loaded file object (PDF, DataFrame, etc.)
self.text: str = "" # Extracted text
self.images: List[str] = [] # Base64-encoded images
self.audio: List[str] = [] # Audio content (future)
self.metadata: Dict[str, Any] = {} # Processing metadata
self.pipeline: List[str] = [] # Processing history
Key Features:
- DSL Parsing: Automatically extracts commands like
[pages:1-5]
from input - Flexible Content: Supports text, images, and metadata
- Pipeline Tracking: Records processing steps for debugging
- Operator Overloading: Supports
|
and+
for pipeline composition
The Pipeline System¶
Location: src/attachments/core.py
Two types of pipelines enable different composition patterns:
Sequential Pipeline (|
operator)¶
result = (attach("document.pdf")
| load.pdf_to_pdfplumber
| modify.pages
| present.markdown)
Additive Pipeline (+
operator)¶
result = attachment | (present.text + present.images + present.metadata)
Registration System¶
Location: src/attachments/core.py
A decorator-based system for registering components:
# Global registries
_loaders = {} # File format → object loaders
_modifiers = {} # Object transformations
_presenters = {} # Content extraction
_refiners = {} # Post-processing
_adapters = {} # API format adapters
_splitters = {} # Split functions that expand attachments into collections
# Registration decorators
@loader(match=lambda att: att.path.endswith('.pdf'))
def pdf_to_pdfplumber(att: Attachment) -> Attachment:
# Implementation here
pass
@modifier
def pages(att: Attachment, pdf: 'pdfplumber.PDF') -> Attachment:
# Modifies att._obj, returns modified attachment
pass
@presenter
def text(att: Attachment, obj: Any) -> Attachment:
# Extracts content to att.text, returns attachment
pass
@splitter
def paragraphs(att: Attachment, text: str) -> AttachmentCollection:
# Expands single attachment into multiple chunks
pass
@refiner
def truncate(att: Attachment) -> Attachment:
# Post-processes presented content
pass
@adapter
def claude(att: Attachment, prompt: str = "") -> List[Dict]:
# Formats for external APIs
pass
Key Differences:
- Loaders: Require a
match
function to determine applicability - Modifiers/Presenters/Splitters: Use type dispatch based on
att._obj
type - Refiners/Adapters: Simple function registration without type dispatch
Namespace System¶
The namespace system solves a practical problem: how do you organize 50+ functions across 6 different categories and make them discoverable? The solution is SmartVerbNamespace
objects that provide clean access (load.pdf_to_pdfplumber
) while supporting IDE autocomplete (sometimes, this is not resolved for some language servers and ideas -.-). Functions are automatically registered into namespaces when their modules are imported, and type dispatch ensures the right function gets called.
Overview¶
Location: src/attachments/__init__.py
The namespace system provides organized access to all registered functions through 6 main namespaces:
# Create the namespace instances after functions are registered
load = SmartVerbNamespace(_loaders) # File format → object loaders
modify = SmartVerbNamespace(_modifiers) # Object transformations
present = SmartVerbNamespace(_presenters) # Content extraction
adapt = SmartVerbNamespace(_adapters) # API format adapters
refine = SmartVerbNamespace(_refiners) # Post-processing
split = SmartVerbNamespace(_splitters) # Split functions that expand attachments
Namespace Functions¶
Namespace | Purpose | Example Functions | Count |
---|---|---|---|
load.* | File → Object | pdf_to_pdfplumber , csv_to_pandas , image_to_pil , html_to_bs4 | 10+ |
modify.* | Object → Object | pages , limit , crop , rotate , select , watermark | 8 |
split.* | Object → Collection | paragraphs , sentences , tokens , pages , slides | 12 |
present.* | Object → text/images/video(future)/audio(future) | markdown , images , csv , html , metadata | 10+ |
refine.* | text/images/video(future)/audio(future) → text/images/video(future)/audio(future) | add_headers , truncate , tile_images , resize_images | 7 |
adapt.* | text/images/video(future)/audio(future) → external API format | claude , openai_chat , openai_responses , dspy | 6 |
Why This Works:
- Consistency: Same pattern for PDFs, CSVs, images, URLs
- Composability: Verbs chain naturally with
|
and+
or stack (the pipe is not mandatory) - Extensibility: Add new file types by implementing the verbs
Usage Patterns¶
Pipeline Composition¶
# Sequential processing with |
result = (attach("document.pdf")
| load.pdf_to_pdfplumber
| modify.pages
| present.markdown
| refine.add_headers
| adapt.claude("Analyze this"))
# Additive composition with +
content = (attach("document.pdf")
| load.pdf_to_pdfplumber
| present.text + present.images + present.metadata)
Direct Function Calls¶
# Load and process directly
att = attach("document.pdf")
att = load.pdf_to_pdfplumber(att)
att = present.markdown(att)
result = adapt.claude(att, "Summarize this")
Partial Application¶
# Create reusable processors
pdf_processor = (load.pdf_to_pdfplumber
| modify.pages
| present.markdown
| refine.add_headers)
# Apply to multiple files
doc1 = pdf_processor("report1.pdf")
doc2 = pdf_processor("report2.pdf")
SmartVerbNamespace Features¶
Runtime Autocomplete: IDE support through __dir__()
implementation
# These work in IDEs with autocomplete
load.pdf_to_pdfplumber
present.markdown
split.paragraphs
Dynamic Registration: New functions automatically appear in namespaces
@loader(match=lambda att: att.path.endswith('.xyz'))
def xyz_to_custom(att): pass
# Immediately available
load.xyz_to_custom # Works automatically
Type Safety: VerbFunction wrappers provide consistent interfaces
# All these patterns work consistently
att | load.pdf_to_pdfplumber
load.pdf_to_pdfplumber(att)
load.pdf_to_pdfplumber("file.pdf") # Auto-creates attachment
The Five-Stage Pipeline¶
The five-stage pipeline exists because file processing has natural stages that need to happen in order. You can’t extract text before loading the file, and you can’t format for APIs before extracting content. Each stage has a clear input/output contract, which makes the system predictable and allows stages to be developed independently.
1. LOAD Stage¶
Purpose: Convert files into structured objects
Location: src/attachments/loaders/
File Path → File Object
Examples:
pdf_to_pdfplumber
: PDF → pdfplumber.PDFcsv_to_pandas
: CSV → pandas.DataFrameimage_to_pil
: Image → PIL.Imageurl_to_bs4
: URL → BeautifulSoup
Architecture:
- Match Functions: Determine which loader handles each file type
- Type Dispatch: Multiple loaders can handle the same file type
- Fallback Chain: Graceful degradation when specialized loaders fail
2. MODIFY Stage¶
Purpose: Transform loaded objects based on DSL commands
Location: src/attachments/modify.py
File Object + DSL Commands → Modified Object
Examples:
pages
: Extract specific pages from PDFs/presentationslimit
: Limit rows in DataFramescrop
: Crop images to specific regionsrotate
: Rotate images
Architecture:
- Command Parsing: Reads DSL commands from
attachment.commands
- Type Dispatch: Different implementations for different object types
- Chaining: Multiple modifications can be applied sequentially
3. PRESENT Stage¶
Purpose: Extract content (text, images, metadata) from objects
Location: src/attachments/presenters/
Modified Object → Text + Images + Metadata
Categories:
- Text Presenters:
text/
- Extract formatted text - Visual Presenters:
visual/
- Extract and process images - Data Presenters:
data/
- Format structured data - Metadata Presenters:
metadata/
- Extract file information
Smart Filtering:
- Format Commands:
[format:markdown]
selects appropriate presenter - Content Filtering:
[images:false]
disables image extraction - Category Detection: Auto-detects presenter type for DSL filtering
4. REFINE Stage¶
Purpose: Post-process and polish extracted content
Location: src/attachments/refine.py
Raw Content → Polished Content
Examples:
add_headers
: Add file headers and structuretruncate
: Limit text length for token budgetstile_images
: Combine multiple images into gridsclean_text
: Remove artifacts and normalize formatting
5. ADAPT Stage¶
Purpose: Format content for specific LLM APIs
Location: src/attachments/adapt.py
Polished Content → API-Specific Format
Adapters:
claude()
: Anthropic Claude message formatopenai_chat()
: OpenAI Chat Completions formatopenai_responses()
: OpenAI Responses API formatdspy()
: DSPy BaseType-compatible objects
The Split/Chunking System¶
The split system exists because sometimes you need granular analysis instead of holistic summaries. Instead of asking “what’s in this document?”, you can ask “what insights can I extract from each section?” The split functions in src/attachments/split.py
transform single attachments into AttachmentCollection
objects, enabling vectorized processing where operations automatically apply to each chunk.
Overview¶
Location: src/attachments/split.py
The Split system expands single attachments into AttachmentCollection
objects for vectorized processing and LLM-friendly chunking.
Single Attachment → AttachmentCollection (Multiple Chunks)
Split Functions¶
Text Splitting:
paragraphs
: Split on double newlinessentences
: Split on sentence boundaries (.!?
)tokens
: Split by approximate token count (~4 chars/token)characters
: Split by character countlines
: Split by line countcustom
: Split by custom separator from DSL commands
Document Splitting:
pages
: Extract pages from PDFs/presentationsslides
: Extract slides from PowerPointsections
: Split HTML by headings
Data Splitting:
rows
: Split DataFrames by row chunkscolumns
: Split DataFrames by column chunks
Split Architecture¶
Registration Pattern:
@splitter
def paragraphs(att: Attachment, text: str) -> AttachmentCollection:
"""Split text content into paragraphs."""
content = att.text if att.text else text
paragraphs = re.split(r'\n\s*\n', content.strip())
chunks = []
for i, paragraph in enumerate(paragraphs):
chunk = Attachment(f"{att.path}#paragraph-{i+1}")
chunk.text = paragraph
chunk.metadata = {
**att.metadata,
'chunk_type': 'paragraph',
'chunk_index': i,
'original_path': att.path
}
chunks.append(chunk)
return AttachmentCollection(chunks)
Key Differences from Modifiers:
- Input:
(att: Attachment, content: str)
or(att: Attachment, obj: ObjectType)
- Output:
AttachmentCollection
(multiple chunks) - Registry:
_splitters
(separate from modifiers) - Purpose: Expand single attachment into multiple chunks
Vectorization & Collections¶
The AttachmentCollection
class solves the problem of applying operations to multiple chunks efficiently. When you split a document, you get a collection that automatically vectorizes operations—chunks | present.markdown
extracts markdown from every chunk, while chunks | adapt.claude()
intelligently combines everything for the AI. The _is_reducer()
method determines whether an operation should vectorize (apply to each item) or reduce (combine items).
AttachmentCollection Architecture¶
Location: src/attachments/core.py
The AttachmentCollection
class enables automatic vectorization - operations apply to each attachment in the collection:
class AttachmentCollection:
"""A collection of attachments that supports vectorized operations."""
def __or__(self, operation: Union[Callable, Pipeline]) -> Union['AttachmentCollection', 'Attachment']:
"""Apply operation - vectorize or reduce based on operation type."""
if self._is_reducer(operation):
# Apply to collection as whole (reduction)
return operation(self)
else:
# Apply to each attachment (vectorization)
results = []
for att in self.attachments:
result = operation(att)
if result is not None:
results.append(result)
return AttachmentCollection(results)
Vectorization Examples¶
# ZIP files become collections that auto-vectorize
images = (attach("photos.zip")
| load.zip_to_images # → AttachmentCollection
| present.images # Vectorized: each image → base64
| refine.tile_images) # Reducer: combine into grid
# Document chunking with vectorization
chunks = (attach("doc.txt")
| load.text_to_string
| split.paragraphs # → AttachmentCollection
| present.markdown # Vectorized: each chunk → markdown
| refine.add_headers) # Vectorized: each chunk gets headers
Reducers vs Vectorizers¶
Vectorizers (default): Apply to each item in collection
- Most presenters (
present.text
,present.images
) - Most modifiers (
modify.pages
,modify.crop
) - Most refiners (
refine.add_headers
,refine.truncate
)
Reducers: Combine collection into single result
refine.tile_images
: Combine images into grid- All adapters (
claude()
,openai_chat()
) - Collection-specific refiners
Detection Logic:
def _is_reducer(self, operation) -> bool:
"""Check if operation combines multiple attachments."""
if hasattr(operation, 'name'):
reducing_operations = {
'tile_images', 'combine_images', 'merge_text',
'claude', 'openai_chat', 'openai_response'
}
return operation.name in reducing_operations
return False
Match System¶
The match system centralizes file type detection logic in reusable predicates. Instead of scattering att.path.endswith('.pdf')
checks throughout the codebase, match functions in src/attachments/matchers.py
provide consistent, testable logic for determining which loaders handle which files. This includes complex cases like distinguishing between downloadable URLs and web pages.
Overview¶
Location: src/attachments/matchers.py
The Match system provides reusable predicates for determining which loaders and processors handle specific file types. This centralizes file type detection logic.
Match Functions¶
# File extension matching
def pdf_match(att: 'Attachment') -> bool:
return att.path.endswith('.pdf')
def image_match(att: 'Attachment') -> bool:
return att.path.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.heic', '.heif'))
# Content-based matching
def webpage_match(att: 'Attachment') -> bool:
"""Check if attachment is a webpage URL (not downloadable file)."""
if not att.path.startswith(('http://', 'https://')):
return False
# Exclude URLs that end with file extensions
file_extensions = ['.pdf', '.pptx', '.docx', '.csv', '.jpg', ...]
return not any(att.path.lower().endswith(ext) for ext in file_extensions)
# Complex logic matching
def git_repo_match(att: 'Attachment') -> bool:
"""Check if path is a Git repository."""
abs_path = os.path.abspath(att.path)
if not os.path.isdir(abs_path):
return False
git_dir = os.path.join(abs_path, '.git')
return os.path.exists(git_dir)
Usage in Loaders¶
from ... import matchers
@loader(match=matchers.pdf_match)
def pdf_to_pdfplumber(att: Attachment) -> Attachment:
"""Load PDF using pdfplumber."""
# Implementation...
@loader(match=matchers.image_match)
def image_to_pil(att: Attachment) -> Attachment:
"""Load images using PIL."""
# Implementation...
Usage in Processors¶
from ..matchers import pdf_match
@processor(match=pdf_match)
def pdf_to_llm(att):
"""Complete PDF processing pipeline."""
return (att
| load.pdf_to_pdfplumber
| present.markdown + present.images
| refine.add_headers)
Benefits¶
- Reusability: Same match logic across loaders and processors
- Consistency: Centralized file type detection
- Maintainability: Update file type logic in one place
- Testability: Match functions can be tested independently
- Extensibility: Easy to add new file type detection logic
Component Deep Dive¶
Each component type has specific patterns and challenges. Loaders deal with import errors and file corruption, presenters handle type dispatch and content extraction, modifiers read DSL commands and transform objects. Understanding these patterns helps when extending the system or debugging issues.
Loaders Architecture¶
Directory Structure:
src/attachments/loaders/
├── documents/ # PDF, DOCX, PPTX loaders
├── data/ # CSV, JSON, Excel loaders
├── media/ # Image, audio, video loaders
├── web/ # URL, HTML loaders
└── repositories/ # Git repo, directory loaders
Enhanced URL Processing (v0.8.0+): The URL morphing architecture provides intelligent file type detection without hardcoded lists:
# New intelligent URL processing pattern
result = (attach("https://example.com/document.pdf")
| load.url_to_response # Download content as response object
| modify.morph_to_detected_type # Smart detection via enhanced matchers
| load.pdf_to_pdfplumber # Automatically triggered by enhanced matcher
| present.markdown)
Enhanced Matchers System: All matchers now intelligently check multiple detection strategies:
def pdf_match(att: 'Attachment') -> bool:
"""Enhanced PDF detection using multiple strategies."""
# Check file extension (traditional)
if att.path.lower().endswith('.pdf'):
return True
# Check Content-Type header (for URLs)
if 'pdf' in att.content_type:
return True
# Check magic number signature (for binary content)
if att.has_magic_signature(b'%PDF'):
return True
return False
URL Morphing Process:
- Download:
url_to_response
fetches content and preserves metadata - Detect:
morph_to_detected_type
uses enhanced matchers for type detection - Transform: Original URL preserved for display, content prepared for loaders
- Load: Appropriate loader automatically triggered by enhanced matcher
Match Function Pattern:
@loader(match=lambda att: att.path.endswith('.pdf'))
def pdf_to_pdfplumber(att: Attachment) -> Attachment:
"""Load PDF using pdfplumber for text and table extraction."""
# Implementation details...
Error Handling:
- Import Errors: Helpful messages for missing dependencies
- File Errors: Graceful handling of corrupted files
- Fallback Chain: Multiple loaders can handle the same file type
Presenters Architecture¶
Smart Category System:
@presenter(category='text')
def markdown(att: Attachment, obj: Any) -> Attachment:
"""Extract content as Markdown format."""
# Implementation...
@presenter(category='image')
def images(att: Attachment, pil_image: 'PIL.Image.Image') -> Attachment:
"""Extract and encode images as base64."""
# Implementation...
Type Dispatch:
- Multiple presenters can handle the same object type
- DSL commands select appropriate presenter
- Fallback to default presenters when specialized ones fail
Modifiers Architecture¶
Command-Driven Processing:
@modifier
def pages(att: Attachment, pdf_obj: 'pdfplumber.PDF') -> Attachment:
"""Extract specific pages based on DSL commands."""
if 'pages' not in att.commands:
return att
pages_spec = att.commands['pages']
# Parse page ranges: "1,3-5,-1"
# Extract specified pages
return att
Type Safety:
- Type hints ensure modifiers only apply to compatible objects
- Runtime type checking prevents errors
- Graceful skipping when commands don’t apply
DSL Command Usage:
- Modifiers read DSL commands from
att.commands
(parsed earlier byAttachment._parse_attachy()
) - Other component types also read DSL commands: presenters (
format
,images
), splitters (tokens
,characters
), refiners (truncate
,tile
), loaders (ignore
,files
), and adapters (prompt
)
Extension System¶
The extension system is designed around the principle that adding a new component should feel natural, not like fighting the framework. The decorator-based registration means your function automatically gets type dispatch, error handling, namespace organization, and IDE support. The key insight is that once you implement one verb for a file type, it immediately works with all the other verbs.
Creating New Loaders¶
Step 1: Create the loader function
# my_custom_loader.py
from attachments.core import Attachment, loader
@loader(match=lambda att: att.path.endswith('.xyz'))
def xyz_to_custom(att: Attachment) -> Attachment:
"""Load XYZ files using custom parser."""
try:
import custom_xyz_parser
# Load the file
with open(att.path, 'rb') as f:
xyz_obj = custom_xyz_parser.parse(f)
# Store in attachment
att._obj = xyz_obj
return att
except ImportError:
att.text = "Custom XYZ parser not installed. Run: pip install custom-xyz-parser"
return att
Step 2: Import to register
# In your code
import my_custom_loader # Registers the loader
from attachments import Attachments
# Now works automatically
ctx = Attachments("document.xyz")
Creating New Presenters¶
# my_custom_presenter.py
from attachments.core import Attachment, presenter
@presenter(category='text')
def custom_format(att: Attachment, xyz_obj: 'CustomXYZObject') -> Attachment:
"""Present XYZ content in custom format."""
# Extract content from XYZ object
content = xyz_obj.extract_content()
# Format as needed
formatted = f"# XYZ Document\n\n{content}"
# Add to attachment (preserving existing content)
att.text += formatted
# Add metadata
att.metadata['xyz_version'] = xyz_obj.version
return att
Creating Pipeline Processors¶
For complete file-to-LLM workflows:
# my_processor.py
from attachments.pipelines import processor
from attachments import load, present, refine
@processor(match=lambda att: att.path.endswith('.xyz'))
def xyz_to_llm(att):
"""Complete XYZ file processor."""
return (att
| load.xyz_to_custom
| present.custom_format + present.metadata
| refine.add_headers)
# Named processor for specialized use
@processor(match=lambda att: att.path.endswith('.xyz'),
name="academic_xyz")
def academic_xyz_to_llm(att):
"""Academic-focused XYZ processor."""
return (att
| load.xyz_to_custom
| present.academic_format + present.citations
| refine.add_bibliography)
High-Level API Design¶
The Attachments
class in src/attachments/highest_level_api.py
is where all the complexity gets hidden behind a simple interface. It automatically detects file types, selects appropriate processors, handles errors gracefully, and formats output for LLM consumption. The _auto_process()
method tries specialized processors first, then falls back to a universal pipeline that works for any file type.
The Attachments Class¶
Location: src/attachments/highest_level_api.py
Design Goals:
- Zero Learning Curve:
Attachments("file.pdf")
just works - Automatic Processing: Smart pipeline selection
- Consistent Interface: Same API for any file type
- Rich Output: Text, images, and metadata ready for LLMs
Auto-Processing Pipeline:
def _auto_process(self, att: Attachment):
"""Enhanced auto-processing with processor discovery."""
# 1. Try specialized processors first
processor_fn = find_primary_processor(att)
if processor_fn:
try:
return processor_fn(att)
except Exception:
# Fall back to universal pipeline
pass
# 2. Universal fallback pipeline
return self._universal_pipeline(att)
Universal Pipeline:
def _universal_pipeline(self, att: Attachment):
"""Universal fallback pipeline for files without specialized processors."""
# Smart loader chain
loaded = (att
| load.url_to_response # URLs → response object (new architecture)
| modify.morph_to_detected_type # response → morphed path (triggers matchers)
| load.url_to_bs4 # Non-file URLs → BeautifulSoup (fallback)
| load.git_repo_to_structure # Git repos → structure object
| load.directory_to_structure # Directories/globs → structure object
| load.pdf_to_pdfplumber # PDF → pdfplumber object
| load.csv_to_pandas # CSV → pandas DataFrame
| load.image_to_pil # Images → PIL Image
| load.html_to_bs4 # HTML → BeautifulSoup
| load.text_to_string # Text → string
| load.zip_to_images) # ZIP → AttachmentCollection (last)
# Smart presenter selection
text_presenter = _get_smart_text_presenter(loaded)
processed = (loaded
| modify.pages # Apply DSL commands
| (text_presenter + present.images + present.metadata)
| refine.tile_images | refine.add_headers)
return processed
API Adapter Integration¶
Automatic Method Exposure:
def __getattr__(self, name: str):
"""Automatically expose all adapters as methods."""
if name in _adapters:
def adapter_method(*args, **kwargs):
adapter_fn = _adapters[name]
combined_att = self._to_single_attachment()
return adapter_fn(combined_att, *args, **kwargs)
return adapter_method
Usage:
ctx = Attachments("document.pdf", "image.jpg")
# These work automatically:
claude_msg = ctx.claude("Analyze this content")
openai_msg = ctx.openai_chat("Summarize this")
dspy_obj = ctx.dspy()
Pipeline Processor System¶
The processor system provides pre-built, battle-tested pipelines for common file types. Located in src/attachments/pipelines/
, these processors handle the edge cases and optimizations that come from real-world usage. The find_primary_processor()
function automatically selects the best processor for each file type, while named processors allow specialized workflows.
Processor Registry¶
Location: src/attachments/pipelines/__init__.py
Two Types of Processors:
- Primary Processors: Auto-selected for simple API
- Named Processors: Explicit access for specialized workflows
@processor(match=lambda att: att.path.endswith('.pdf'))
def pdf_to_llm(att): # Primary - auto-selected
return standard_pdf_pipeline(att)
@processor(match=lambda att: att.path.endswith('.pdf'), name="academic_pdf")
def academic_pdf_to_llm(att): # Named - explicit access
return academic_pdf_pipeline(att)
Registry Architecture:
class ProcessorRegistry:
def __init__(self):
self._processors: List[ProcessorInfo] = []
self._primary_processors: Dict[str, ProcessorInfo] = {}
self._named_processors: Dict[str, ProcessorInfo] = {}
def find_primary_processor(self, att: Attachment) -> Optional[ProcessorInfo]:
"""Find the primary processor for an attachment."""
for proc_info in self._primary_processors.values():
if proc_info.match_fn(att):
return proc_info
return None
Processor Discovery¶
Automatic Registration:
# Import all processor modules to register them
from . import pdf_processor
from . import image_processor
from . import docx_processor
from . import pptx_processor
# ... etc
Match Function Examples:
# File extension matching
match=lambda att: att.path.endswith('.pdf')
# Content-based matching
match=lambda att: att.path.startswith('http') and 'github.com' in att.path
# Complex logic
match=lambda att: (att.path.endswith('.txt') and
att.commands.get('format') == 'academic')
Error Handling & Fallbacks¶
File processing fails in predictable ways: missing dependencies, corrupted files, network issues. The error handling system in src/attachments/core.py
provides helpful error messages with installation instructions, graceful fallbacks to simpler processing methods, and automatic cleanup of temporary resources. The goal is software that bends rather than breaks.
Graceful Degradation¶
Loader Fallbacks:
try:
loaded = (att
| load.specialized_loader # Try specialized first
| load.generic_loader # Fall back to generic
| load.text_to_string) # Last resort: treat as text
except Exception as e:
# Create error attachment with helpful message
att.text = f"Could not process {att.path}: {str(e)}"
Dependency Handling:
def _create_helpful_error_attachment(att: Attachment, import_error: ImportError, loader_name: str):
"""Create helpful error messages for missing dependencies."""
# Map loader names to installation instructions
dependency_map = {
'pdf_to_pdfplumber': 'pip install pdfplumber',
'csv_to_pandas': 'pip install pandas',
'image_to_pil': 'pip install Pillow',
}
install_cmd = dependency_map.get(loader_name, 'pip install attachments[all]')
att.text = f"""
⚠️ Missing dependency for {att.path}
To process this file type, install the required dependency:
{install_cmd}
Or install all dependencies:
pip install attachments[all]
"""
return att
Error Recovery¶
Pipeline Resilience:
def _execute_steps(self, result: Attachment, steps: List[Callable]):
"""Execute pipeline steps with error recovery."""
for step in steps:
try:
result = step(result)
except Exception as e:
# Log error but continue pipeline
result.metadata['errors'] = result.metadata.get('errors', [])
result.metadata['errors'].append(f"{step.__name__}: {str(e)}")
# Continue with previous result
return result
Contributing New Components¶
The architecture is designed to make contributing feel natural. Each component type follows consistent patterns, gets automatic integration with the existing infrastructure, and benefits from shared functionality like error handling and type dispatch. The key is understanding which verb category your function belongs to and following the established patterns.
Quick Start Checklist¶
Adding a New Loader:
- Create loader function with
@loader
decorator - Add match function for file type detection
- Handle import errors gracefully
- Set
att._obj
to the loaded object (type dispatch happens automatically) - Test with various file formats
Adding a New Presenter:
- Create presenter function with
@presenter
decorator - Add type hints for the object parameter (enables type dispatch)
- Use
att.text +=
to preserve existing content (supports+
additive operator) - Add relevant metadata to
att.metadata
- Handle exceptions gracefully
Adding a New Modifier:
- Create modifier function with
@modifier
decorator - Add type hints for the object parameter (enables type dispatch)
- Read DSL commands from
att.commands
if needed - Modify
att._obj
in place and return the attachment - Handle edge cases gracefully
Adding a New Splitter:
- Create splitter function with
@splitter
decorator - Add type hints for the content parameter (text or object)
- Return
AttachmentCollection
with multiple chunks - Copy metadata and commands to each chunk
- Add chunk-specific metadata (index, type, etc.)
Adding a New Adapter:
- Create adapter function with
@adapter
decorator - Handle both
Attachment
andAttachmentCollection
inputs - Use
_handle_collection()
helper to convert collections - Format according to target API specification
- Include proper error handling for missing dependencies
Key Operator Behaviors:
|
(pipe) operator: Overwrites/replaces content - each step transforms the attachment+
(plus) operator: Additive composition - combines multiple presenters- Presenters must use
att.text +=
to append content (notatt.text =
) - Example:
present.text + present.images + present.metadata
combines all outputs - Loaders and refiners can use
att.text =
since they’re not typically used with+
- Presenters must use
Testing Your Components¶
# Test your new component
from attachments import Attachments
import my_new_component # Registers your component
# Test with simple API
ctx = Attachments("test_file.xyz")
print(str(ctx)) # Should use your loader/presenter
# Test with pipeline API
from attachments import attach, load, present
result = (attach("test_file.xyz")
| load.xyz_to_custom
| present.custom_format)
Best Practices¶
- Error Handling: Always handle missing dependencies gracefully
- Type Safety: Use type hints for proper dispatch
- Documentation: Include docstrings with examples
- Testing: Test with edge cases and malformed files
Advanced Topics¶
Custom Pipeline Composition¶
The pipeline system supports sophisticated composition patterns that enable reusable, modular processing workflows. Based on the codebase patterns in src/attachments/core.py
and src/attachments/pipelines/
, here are the key composition techniques:
Reusable Pipeline Functions¶
# Create callable pipeline functions by assigning to variables
csv_analyzer = (load.csv_to_pandas
| modify.limit
| present.head + present.summary + present.metadata
| refine.add_headers)
# Use as function with any CSV file
result = csv_analyzer("sales_data.csv[limit:100]")
analysis = result.claude("What patterns do you see?")
# Apply to multiple files
for file in ["q1.csv", "q2.csv", "q3.csv"]:
quarterly_data = csv_analyzer(file)
insights = quarterly_data.openai_chat("Summarize key metrics")
Conditional Pipeline Branching¶
# Smart pipeline that adapts based on file type
universal_processor = (
load.pdf_to_pdfplumber | # Try PDF first
load.csv_to_pandas | # Then CSV
load.image_to_pil | # Then images
load.text_to_string # Finally text fallback
)
# Different presentation based on content type
def smart_presenter(att):
if hasattr(att._obj, 'columns'): # DataFrame
return present.head + present.summary
elif hasattr(att._obj, 'size'): # PIL Image
return present.images + present.metadata
else: # Text or other
return present.markdown + present.metadata
# Combine into adaptive pipeline
adaptive = universal_processor | smart_presenter | refine.add_headers
Pipeline Composition with Fallbacks¶
# Primary pipeline with fallback chain (from src/attachments/core.py)
robust_pdf = Pipeline(
steps=[load.pdf_to_pdfplumber, present.markdown, refine.add_headers],
fallback_pipelines=[
Pipeline([load.text_to_string, present.text]), # Text fallback
Pipeline([load.image_to_pil, present.images]) # Image fallback
]
)
# If PDF processing fails, automatically tries text then image processing
result = robust_pdf("document.pdf")
Vectorized Collection Processing¶
# Split documents into chunks for granular analysis
chunked_analysis = (attach("large_document.pdf")
| load.pdf_to_pdfplumber
| split.pages # → AttachmentCollection
| present.markdown # Vectorized: each page
| refine.add_headers # Vectorized: each page
| adapt.claude("Analyze each page separately"))
# Process ZIP archives with vectorization
image_batch = (attach("photos.zip")
| load.zip_to_images # → AttachmentCollection
| present.images # Vectorized: each image
| refine.tile_images) # Reducer: combine into grid
Method-Style Pipeline API¶
# Pipelines automatically expose adapter methods (from highest_level_api.py)
document_processor = (load.pdf_to_pdfplumber
| present.markdown + present.images
| refine.add_headers)
# All these work automatically:
claude_result = document_processor.claude("report.pdf", "Summarize key points")
openai_result = document_processor.openai_chat("report.pdf", "Extract action items")
dspy_result = document_processor.dspy("report.pdf")
Performance Optimization¶
The codebase implements several performance optimization strategies, particularly for memory management and large file handling:
Lazy Loading and Memory Management¶
Size-Based Early Exit (from src/attachments/loaders/repositories/
):
# Repositories check total size before processing files
size_limit_mb = 500
size_limit_bytes = size_limit_mb * 1024 * 1024
# Early exit prevents memory issues during file collection
if total_size > size_limit_bytes:
if not force_process:
# Return size warning instead of processing
return create_size_warning_attachment(att, total_size, file_count)
Efficient File Collection (from src/attachments/loaders/repositories/utils.py
):
# Binary file detection prevents loading problematic files
def is_likely_binary(file_path: str) -> bool:
problematic_extensions = {
'.exe', '.dll', '.so', '.dylib', '.bin', '.obj', '.o',
'.pyc', '.pyo', '.pyd', '.class', '.woff', '.woff2'
}
# Check first 1024 bytes for null bytes (binary indicator)
with open(file_path, 'rb') as f:
chunk = f.read(1024)
if b'\x00' in chunk:
return True
Namespace Caching (from src/attachments/highest_level_api.py
):
# Global cache prevents repeated namespace imports
_cached_namespaces = None
def _get_cached_namespaces():
global _cached_namespaces
if _cached_namespaces is None:
_cached_namespaces = _get_namespaces()
return _cached_namespaces
Image Processing Optimization¶
Efficient Image Tiling (from src/attachments/refine.py
):
# Resize to smallest common dimensions for memory efficiency
min_width = min(img.size[0] for img in tile_images_subset)
min_height = min(img.size[1] for img in tile_images_subset)
# Don't make images too small
min_width = max(min_width, 100)
min_height = max(min_height, 100)
resized_images = [img.resize((min_width, min_height)) for img in tile_images_subset]
Smart Truncation (from src/attachments/highest_level_api.py
):
# Apply truncation only for very long text
if hasattr(processed, 'text') and processed.text and len(processed.text) > 5000:
processed = processed | refine.truncate(3000)
Performance Best Practices¶
Use DSL Commands for Filtering:
# Efficient: Filter at load time small_data = Attachments("large_file.csv[limit:1000]") # Less efficient: Load everything then filter all_data = Attachments("large_file.csv") | modify.limit
Leverage Repository Ignore Patterns:
# Efficient: Skip unnecessary files codebase = Attachments("./project[ignore:standard]") # Inefficient: Process all files including build artifacts codebase = Attachments("./project")
Use Appropriate Processing Modes:
# Structure only (fast) structure = Attachments("./large-repo[mode:structure]") # Full content processing (slower) content = Attachments("./large-repo[mode:content]")
Debugging and Introspection¶
The architecture provides several debugging and introspection capabilities:
Pipeline Tracking¶
Automatic Pipeline History (from src/attachments/core.py
):
# Each attachment tracks its processing pipeline
att = attach("document.pdf")
result = att | load.pdf_to_pdfplumber | present.markdown | refine.add_headers
print(result.pipeline) # ['pdf_to_pdfplumber', 'markdown', 'add_headers']
Detailed Repr for Debugging:
# Attachment.__repr__ shows processing state
att = Attachment("document.pdf")
print(repr(att))
# Attachment(path='document.pdf', text=1234 chars, images=[2 imgs: ...], pipeline=['pdf_to_pdfplumber', 'markdown'])
Error Handling and Fallbacks¶
Graceful Error Recovery (from src/attachments/core.py
):
def _execute_steps(self, result: 'Attachment', steps: List[Callable]) -> Any:
for step in steps:
try:
result = step(result)
except Exception as e:
# Log error but continue pipeline
result.metadata['errors'] = result.metadata.get('errors', [])
result.metadata['errors'].append(f"{step.__name__}: {str(e)}")
return result
Helpful Error Messages (from src/attachments/core.py
):
def _create_helpful_error_attachment(att: Attachment, import_error: ImportError, loader_name: str):
dependency_map = {
'pdf_to_pdfplumber': 'pip install pdfplumber',
'csv_to_pandas': 'pip install pandas',
'image_to_pil': 'pip install Pillow',
}
install_cmd = dependency_map.get(loader_name, 'pip install attachments[all]')
att.text = f"⚠️ Missing dependency for {att.path}\n\nInstall: {install_cmd}"
Processor Discovery and Introspection¶
List Available Processors (from src/attachments/pipelines/__init__.py
):
from attachments.pipelines import list_available_processors
# Get all registered processors
processors = list_available_processors()
print(processors['primary_processors']) # Auto-selected processors
print(processors['named_processors']) # Specialized processors
# Find processors for specific files
from attachments.pipelines import _processor_registry
matching = _processor_registry.list_processors_for_file(attach("document.pdf"))
Registry Inspection:
from attachments.core import _loaders, _presenters, _modifiers
# Inspect registered components
print("Available loaders:", list(_loaders.keys()))
print("Available presenters:", list(_presenters.keys()))
print("Available modifiers:", list(_modifiers.keys()))
# Check type dispatch for presenters
for name, handlers in _presenters.items():
print(f"{name}: {[h[0] for h in handlers]}") # Show type annotations
Debugging Utilities¶
Metadata Inspection:
# Check processing metadata
result = Attachments("document.pdf")
print(result.attachments[0].metadata)
# Shows: file info, processing steps, errors, performance metrics
# Check for processing errors
if 'errors' in result.attachments[0].metadata:
print("Processing errors:", result.attachments[0].metadata['errors'])
Pipeline State Inspection:
# Create pipeline and inspect state at each step
att = attach("document.pdf")
# Step by step debugging
loaded = att | load.pdf_to_pdfplumber
print(f"After loading: {type(loaded._obj)}")
presented = loaded | present.markdown
print(f"After presenting: {len(presented.text)} chars")
refined = presented | refine.add_headers
print(f"After refining: {refined.text[:100]}...")
Integration Patterns¶
The architecture supports integration with major LLM libraries and frameworks:
OpenAI Integration¶
Chat Completions API (from src/attachments/adapt.py
):
from openai import OpenAI
from attachments import Attachments
# Direct integration
client = OpenAI()
doc = Attachments("report.pdf")
# Method 1: Using adapter
messages = doc.openai_chat("Analyze this document")
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=messages
)
# Method 2: Using pipeline
response = (attach("report.pdf")
| load.pdf_to_pdfplumber
| present.markdown + present.images
| adapt.openai_chat("Analyze this document"))
Responses API (newer OpenAI format):
# OpenAI Responses API format
response_input = doc.openai_responses("Analyze this document")
response = client.responses.create(
input=response_input,
model="gpt-4-turbo"
)
Anthropic Claude Integration¶
Message Format (from src/attachments/adapt.py
):
import anthropic
from attachments import Attachments
# Direct integration
client = anthropic.Anthropic()
doc = Attachments("presentation.pptx")
# Claude format with image support
messages = doc.claude("Analyze these slides")
response = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4000,
messages=messages
)
# Pipeline approach
analysis = (attach("presentation.pptx")
| load.pptx_to_python_pptx
| present.markdown + present.images
| adapt.claude("What are the key insights?"))
DSPy Integration¶
Seamless DSPy Compatibility (from src/attachments/dspy.py
):
import dspy
from attachments.dspy import Attachments # Special DSPy-optimized import
# Configure DSPy
dspy.configure(lm=dspy.LM('openai/gpt-4-turbo'))
# Direct usage in DSPy signatures
rag = dspy.ChainOfThought("question, document -> answer")
# No .dspy() call needed with special import
doc = Attachments("research_paper.pdf")
result = rag(question="What are the main findings?", document=doc)
# Alternative: Regular import with explicit adapter
from attachments import Attachments
doc = Attachments("research_paper.pdf").dspy()
result = rag(question="What are the main findings?", document=doc)
DSPy BaseType Compatibility:
# The DSPy adapter creates Pydantic models compatible with DSPy
dspy_obj = doc.dspy()
print(dspy_obj.model_dump()) # Pydantic serialization
print(dspy_obj.serialize_model()) # DSPy serialization
Custom LLM Library Integration¶
Creating Custom Adapters:
from attachments.core import adapter, Attachment
@adapter
def custom_llm(att: Attachment, prompt: str = "") -> dict:
"""Adapter for custom LLM library."""
return {
'prompt': prompt,
'content': att.text,
'images': att.images,
'metadata': att.metadata,
'format': 'custom_format_v1'
}
# Use immediately after registration
result = Attachments("document.pdf").custom_llm("Analyze this")
Langchain Integration Pattern¶
# Example integration with Langchain (not built-in)
from langchain.schema import Document
from attachments import Attachments
def attachments_to_langchain(attachments_obj):
"""Convert Attachments to Langchain Documents."""
documents = []
for att in attachments_obj.attachments:
doc = Document(
page_content=att.text,
metadata={
**att.metadata,
'source': att.path,
'images': att.images
}
)
documents.append(doc)
return documents
# Usage
docs = Attachments("document.pdf", "data.csv")
langchain_docs = attachments_to_langchain(docs)
Streaming and Async Patterns¶
# Async processing pattern
import asyncio
from attachments import Attachments
async def process_documents_async(file_paths):
"""Process multiple documents asynchronously."""
tasks = []
for path in file_paths:
task = asyncio.create_task(process_single_doc(path))
tasks.append(task)
results = await asyncio.gather(*tasks)
return results
async def process_single_doc(path):
"""Process single document (run in thread pool for CPU-bound work)."""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, lambda: Attachments(path))
# Usage
results = asyncio.run(process_documents_async(["doc1.pdf", "doc2.pdf"]))
Conclusion¶
The Attachments architecture is designed to be simple for users but powerful for contributors. The five-stage pipeline provides clear separation of concerns, while the registration system makes it easy to add new capabilities.
Key architectural strengths:
- Modularity: Each component has a single, clear responsibility
- Extensibility: New file types and transformations via simple decorators
- Composability: Components can be mixed and matched
Whether you’re using the simple Attachments("file.pdf")
API or building complex pipelines, the architecture scales to meet your needs while maintaining consistency and reliability.
This document is a living guide. As the architecture evolves, we’ll update it to reflect new patterns and best practices. Contributions and feedback are welcome!